
3.4 Average of Cauchy variables

The probability distribution for a Cauchy variable is

p(x) =
1

π(1 + x2)

and so we can see that the variance is indeterminate, because∫
x2 prob(x) dx

diverges.
We have seen that the sum of variables is a convolution: therefore the product of the
Fourier transforms of the distribution should give us the distribution of the mean. The
transform of this Cauchy distribution is

P (k) = e−|k|

where k is the Fourier variable, and there will be some constant in front, depending on
the particular definition of the transform.
If we add N identically-distributed Cauchy variables to get a sum s, then the transform
of the distribution of s will be

P (k′) = e−|Nk
′|

and, inverting this transform, we find

p(s) ∝ N

π(N 2 + s2)
.

Remembering that the average a = s/N , change variables to get

p(a) ∝ N2

π(N 2 + (Na)2)

which shows that the mean a has the same distribution as a single observation x!
To find a better estimator: if our N data are Xi, and the distribution has an unknown
location µ, then the probability of getting this particular dataset is

L =
∏
i

1

1 + (Xi − µ)2
.

We can find the value of µ that maximizes L – this is intuitive. We discuss this estimator
much more in Chapter 5. In the present case, maximization gives a high-order polynomial
equation in µ. There is no neat analytical solution, but numerical maximization is fast.
Try this with some test data drawn from a Cauchy distribution. The estimator finds the
mean, and the scatter on the estimator drops off nicely as

√
N , just as you might hope.

Jaynes (1983) gives an insightful discussion of this problem (in the paper “Confidence
Intervals vs Bayesian Intervals”) where he shows how, with just two data, the estimate
X1 + X2 can be greatly improved by making it conditional on the (also known!) value
X1 − X2.
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